|
versor
3.0
C++11 library for Geometric algebra
|
For making commonly used geometric entities. More...
Macros | |
| #define | E1 e1(1) |
| #define | E2 e2(1) |
| #define | E3 e3(1) |
| #define | PT(x, y, z) vsr::cga::Round::null(vsr::cga::Vec(x,y,z)) |
| A vsr::cga::Point at coordinates x,y,z. | |
| #define | DLS(r) vsr::cga::Round::dls(0,0,0,r) |
| A vsr::cga::DualSphere at (0,0,0) with radius r. | |
| #define | PV(v) vsr::cga::Round::null(v) |
| #define | PX(f) vsr::cga::Round::null(vsr::cga::Vec(f,0,0)) |
| #define | PY(f) vsr::cga::Round::null(vsr::cga::Vec(0,f,0)) |
| #define | PZ(f) vsr::cga::Round::null(vsr::cga::Vec(0,0,f)) |
| #define | PAIR(x, y, z) (PT(x,y,z)^PT(-x,-y,-z)) |
| A vsr::cga::Pair of points at x,y,z and -x,-y,-z. | |
| #define | CXY(f) (PX(f)^PY(f)^PX(-f)).unit() |
| A vsr::cga::Circle in xy plane with radius f. | |
| #define | CXZ(f) (PX(f)^PZ(f)^PX(-f)).unit() |
| A vsr::cga::Circle in xz plane with radius f. | |
| #define | CYZ(f) (PY(f)^PY(-f)^PZ(f)).unit() |
| A vsr::cga::Circle in yz plane with radius f. | |
| #define | F2S(f) f*1000.0 |
| #define | S2F(f) f/1000.0 |
| #define | LN(x, y, z) ( vsr::cga::Point(0,0,0,1,.5)^PT(x,y,z)^vsr::cga::Inf(1) ) |
| vsr::cga::Line through origin in direction x,y,z | |
| #define | DLN(x, y, z) ( vsr::Op::dl(LN(x,y,z)) ) |
| vsr::cga::DualLine through origin in direction x,y,z | |
| #define | PAO vsr::cga::Point(0,0,0,1,0) |
| vsr::cga::Point At Origin | |
| #define | EP vsr::cga::Dls(0,0,0,1,-.5) |
| unit vsr::cga::DualSphere at origin: swap with infinity for hyperbolic space | |
| #define | EM vsr::cga::Dls(0,0,0,1,.5) |
| unit imaginary vsr::cga::DualSphere at origin: swap with infinity for spherical space | |
| #define | INFTY vsr::cga::Inf(1) |
| vsr::cga::Infinity(1) | |
| #define | HYPERBOLIC_INF EP |
| #define | SPHERICAL_INF EM |
| #define | EUCLIDEAN_INF INFTY |
| #define | HLN(x, y, z) (vsr::cga::Ori(1)^PT(x,y,z)^EP) |
| #define | HDLN(x, y, z) (vsr::Op::dl(HLN(x,y,z))) |
For making commonly used geometric entities.
1.8.10