versor
3.0
C++11 library for Geometric algebra
|
3D CGA Instantiations of the Multivector Template class More...
Typedefs | |
typedef Sca | vsr::cga::Scalar |
0-blade: \(s=1\) More... | |
typedef Vec | vsr::cga::Vector |
Euclidean 1-blade: \(\boldsymbol{x}=\{e_1,e_2,e_3\}\) | |
typedef Biv | vsr::cga::Bivector |
Euclidean 2-blade: \(\boldsymbol{B}=\{e_{12},e_{13},e_{23}\}\) | |
typedef Tri | vsr::cga::Trivector |
Euclidean 3-blade: \(\boldsymbol{I_3}=\{e_{123}\}\) | |
typedef Rot | vsr::cga::Rotor |
Euclidean Rotor (Quaternionic): \(R=\{1,e_{12},e_{13},e_{23}\}\) | |
typedef Ori | vsr::cga::Origin |
Null Origin Blade: \(n_o\) | |
typedef Inf | vsr::cga::Infinity |
Null Infinity Blade: \(n_\infty\) | |
typedef Mnk | vsr::cga::Minkowski |
Minkowski Plane: \(E=n_o\wedge n_\infty\) | |
typedef Pss | vsr::cga::Pseudoscalar |
Tangent Pseudoscalar 5-blade: \(I=e_{123} \wedge n_o \wedge n_\infty\) | |
typedef Pnt | vsr::cga::Point |
Null Vector \(p=\{e_1,e_2,e_3,n_o,n_\infty\}\) | |
typedef Par | vsr::cga::Pair |
Point Pair 2-blade \(\tau=p_a \wedge p_b=\{e_{12},e_{13},e_{23},e_{1}n_o,e_{2}n_o,e_{3}n_o,e_{1}n_\infty,e_{2}n_\infty,e_{3}n_\infty,n_{o}n_\infty\}\) | |
typedef Cir | vsr::cga::Circle |
Direct Circle 3-blade \(\kappa=p_a \wedge p_b \wedge p_c\) | |
typedef Sph | vsr::cga::Sphere |
Direct Sphere 4-blade \(\Sigma=p_a \wedge p_b \wedge p_c \wedge p_d\) | |
typedef Pnt | vsr::cga::DualSphere |
Same Type as Point \(\sigma\) | |
typedef Drv | vsr::cga::DirectionVector |
Direction Vector \(\boldsymbol{v}n_\infty\) | |
typedef Drb | vsr::cga::DirectionBivector |
Direction Bivector \(\boldsymbol{B}n_\infty\) | |
typedef Drt | vsr::cga::DirectionTrivector |
Direction Bivector \(\boldsymbol{I}n_\infty\) | |
typedef Tnv | vsr::cga::TangentVector |
Tangent Vector \(\boldsymbol{x}n_o\) | |
typedef Tnb | vsr::cga::TangentBivector |
Tangent Bivector \(\boldsymbol{B}n_o\) | |
typedef Tnt | vsr::cga::TangentTrivector |
Tangent Trivector \(\boldsymbol{I}n_o\) | |
typedef Dll | vsr::cga::DualLine |
Dual Line bivector \(\lambda=\boldsymbol{B}+\boldsymbol{x}n_\infty\) | |
typedef Lin | vsr::cga::Line |
Direct Line Trivector \(p_a \wedge p_b \wedge n_\infty\) | |
typedef Flp | vsr::cga::FlatPoint |
Flat Point \(p \wedge n_\infty\) | |
typedef Pln | vsr::cga::Plane |
Direct Plane \(p_a \wedge p_b \wedge p_c \wedge n_\infty\) | |
typedef Dlp | vsr::cga::DualPlane |
Dual Plane \(\boldsymbol{n}+n_\infty\) | |
typedef Trs | vsr::cga::Translator |
Translating Rotor \(1-\boldsymbol{v}n_\infty\) | |
typedef Mot | vsr::cga::Motor |
Twisting Rotor \(e^\lambda\) | |
typedef Trv | vsr::cga::Transversor |
Transversion at the Origin \(1-\boldsymbol{v}n_o\) | |
typedef Bst | vsr::cga::Boost |
Homogenous Transversion \(e^\tau=\mbox{cosh}(\tau)-\mbox{sinh}(\tau)\) | |
typedef Con | vsr::cga::ConformalRotor |
General Conformal \(e^{\tau_a} e^{\tau_b}\);. | |
typedef Dil | vsr::cga::Dilator |
Dilation relative to Origin \(1+E\) | |
typedef Tsd | vsr::cga::TranslatedDilator |
Dilation relative to some point p \(e^{p \wedge n_\infty}\) | |
3D CGA Instantiations of the Multivector Template class
These are the most Common 3D Conformal Geometric Algebra Types,
Types can be written in long form (as in Scalar or Pseudoscalar) or three-letter short form (as in Sca or Pss).